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Abstract. The R package Counterfactual implements the estimation and inference meth-

ods of Chernozhukov et al. (2013) for counterfactual analysis. The counterfactual distributions

considered are the result of changing either the marginal distribution of covariates related to

the outcome variable of interest, or the conditional distribution of the outcome given the co-

variates. They can be applied to estimate quantile treatment e�ects and wage decompositions.

This vignette serves as an introduction to the package and displays basic functionality of the

commands contained within.

1. Introduction

Using econometric terminology, we can often think of a counterfactual distribution as the result

of a change in either the distribution of a set of covariates X that determine the outcome variable

of interest Y , or the relationship of the covariates with the outcomes, that is, a change in the

conditional distribution of Y givenX. Counterfactual analysis consists of evaluating the e�ects of

such changes. The R package Counterfactual implements the methods of Chernozhukov et al.

(2013) for counterfactual analysis. It contains commands to estimate and make inference on

quantile e�ects constructed from counterfactual distributions. The counterfactual distributions

are estimated using regression methods such as classical, duration, quantile and distribution

regressions. The inference on the quantile e�ect function can be pointwise at a speci�c quantile

index or uniform over a range of speci�ed quantile indexes.

We start by giving a simple example of counterfatual analysis. Suppose we would like to

analyze the wage di�erences between men and women. Let 0 denote the population of men

and let 1 denote the population of women. The variable Yj denotes wages and Xj denotes job

market-relevant characteristics that a�ect wages for populations j = 0 and j = 1. The conditional

distribution functions FY0|X0
(y|x) and FY1|X1

(y|x) describe the stochastic assignment of wages to

workers with characteristics x, for men and women, respectively. Let FY ⟨0|0⟩ and FY ⟨1|1⟩ represent

the observed distribution function of wages for men and women, and let FY ⟨0|1⟩ represent the

distribution function of wages that would have prevailed for women had they faced the men's

wage schedule FY0|X0
:

FY ⟨0|1⟩(y) :=

∫
X1

FY0|X0
(y|x)dFX1(x).

The latter distribution is called counterfactual, since it does not arise as a distribution from any

observable population. Rather, this distribution is constructed by integrating the conditional

distribution of wages for men with respect to the distribution of characteristics for women. This
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quantity is well de�ned if X0, the support of men's characteristics, includes X1, the support of

women's characteristics, namely X1 ⊂ X0.

Let F← denote the quantile or left-inverse function of the distribution function F . The dif-

ference in the observed wage quantile function between men and women can be decomposed in

the spirit of Oaxaca (1973) and Blinder (1973) as

F←Y ⟨1|1⟩ − F←Y ⟨0|0⟩ = [F←Y ⟨1|1⟩ − F←Y ⟨0|1⟩] + [F←Y ⟨0|1⟩ − F←Y ⟨0|0⟩], (1)

where the �rst term in brackets is due to di�erences in the wage structure and the second term

is a composition e�ect due to di�erences in characteristics. These counterfactual e�ects are

well de�ned econometric parameters and are widely used in empirical analysis, for example, the

�rst term of the decomposition is a measure of gender wage discrimination. In Section 3.2 we

consider an empirical example where 0 denotes the population of nonunion workers and 1 denotes

the population of union workers. In this case the the wage structure e�ect corresponds to the

treatment e�ect of union or union premium. It is important to note that these e�ects do not

necessarily have a causal interpretation without additional conditions that are spelled out in

Chernozhukov et al. (2013).

2. The Counterfactual Package

2.1. Getting Started. To get started using the package Counterfactual for the �rst time,

issue the command

> install.packages("Counterfactual")

into your R browser to install the package in your computer. Once the package has been installed,

you can use the package Counterfactual during any R session by simply issuing the command

> library(Counterfactual)

Now you are ready to use the function counterfactual and data sets contained in Counterfactual.

For general questions about the package you may type

> help(package = "Counterfactual")

to view the package help �le, or for more questions about a speci�c function you can type

help(function-name ). For example, try:

> help(counterfactual)

or simply type

> ?counterfactual

The command counterfactual has the general syntax:

> counterfactual(formula, data, weights, na.action = na.exclude,

+ group, treatment = FALSE, decomposition = FALSE,

+ transformation = FALSE, counterfactual_var,

+ quantiles, method = "qr",

+ trimming = 0.005, nreg = 100, scale_variable,

+ counterfactual_scale_variable,
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+ censoring = 0, right = FALSE, nsteps = 3,

+ firstc = 0.1, secondc = 0.05, noboot = FALSE,

+ weightedboot = FALSE, seed = 8, robust = FALSE,

+ reps = 100, alpha = 0.05, first = 0.1,

+ last = 0.9, cons_test = 0, printdeco = TRUE,

+ sepcore = FALSE, ncore=1)

To describe the di�erent options of the command we need to provide some background on

methods for counterfactual analysis.

2.2. Setting for Counterfactual Analysis. Consider a general setting with two populations

labeled by k ∈ K = {0, 1}. For each population k there is the dx-vector Xk of covariates and the

scalar outcome Yk. The covariate vector is observable in all populations, but the outcome is only

observable in populations j ∈ J ⊆ K. Let FXk
denote the covariate distribution in population

k ∈ K, and FYj |Xj
and QYj |Xj

denote the conditional distribution and quantile functions in

population j ∈ J . We denote the support of Xk by Xk ⊆ Rdx , and the region of interest for

Yj by Yj ⊆ R. The refer to j as the reference population(s) and to k as the counterfactual

population(s).

The reference and counterfactual populations in the wage examples correspond to di�erent

groups such as men and women or nonunion and union workers. We can also generate counter-

factual populations by arti�cially transforming a reference population. Formally, we can think

of Xk as being created through a known transformation of Xj :

Xk = gk(Xj), where gk : Xj → Xk. (2)

This case covers adding one unit to the �rst covariate, X1,k = X1,j + 1, holding the rest of the

covariates constant. The resulting quantile e�ect becomes the unconditional quantile regression,

which measures the e�ect of a unit change in a given covariate component on the unconditional

quantiles of Y . For example, this type of counterfactual is useful for estimating the treatment

e�ect of smoking during pregnancy on infant birth weights. Another possible transformation is a

mean preserving redistribution of the �rst covariate implemented asX1,k = (1−α)E[X1,j ]+αX1,j .

These and more general types of transformation de�ned in (2) are useful for estimating the e�ect

of a change in taxation on the marginal distribution of food expenditure or the e�ect of cleaning

up a local hazardous waste site on the marginal distribution of housing prices (Stock (1991)).

We give an example of this type of transformation in Section 3.1.

The reference and counterfactual populations can be speci�ed to counterfactual in two ways

that accomodate the previous two cases:

(1) If the option group has been speci�ed, then j is the population de�ned by group=0 and

k is the population de�ned by group=1. This means that both X and Y are observed

in group=0, but only X needs to be observed in group=1. When both X and Y are ob-

served in group=1, the option treatment=TRUE speci�es that the structure or treatment

e�ect should be computed, whereas the dafault option treatment=FALSE speci�es that
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the composition e�ect should be computed; see the de�nition of the structure and com-

position e�ects in the decomposition (1). If in addition to treatment=TRUE the option

decomposition=TRUE is selected, then the entire decompostion (1) is reported including

the composition, structure and total e�ects. Note that we can reverse the roles of the

populations de�ned by an indicator variable vargroup by setting either group=vargroup

or group=1-vargroup.

(2) Alternatively, the option counterfactual_var can be used to specify the covariates in

the counterfactual population. In this case, the names on the right handside of formula

contain the variables in Xj and counterfactual_var contains the variables in Xk. The

option transformation=TRUE should be used when Xk is generated as a transformation

of Xj , e.g., equation (2). The list passed to counterfactual_var must contain exactly

the same number of variables as the list of independent variables in formula and the

order of the variables in the list matters.

Counterfactual distribution and quantile functions are formed by combining the conditional

distribution in the population j with the covariate distribution in the population k, namely:

FY ⟨j|k⟩(y) :=
∫
Xk

FYj |Xj
(y|x)dFXk

(x), y ∈ Yj ,

QY ⟨j|k⟩(τ) := F←Y ⟨j|k⟩(τ), τ ∈ (0, 1),

where (j, k) ∈ JK, and F←Y ⟨j|k⟩(τ) = inf{y ∈ Yj : FY ⟨j|k⟩(y) ≥ τ} is the left-inverse function of

FY ⟨j|k⟩. The main interest lies in the quantile e�ect (QE) function, de�ned as the di�erence of

two counterfactual quantile functions over a set of quantile indexes T ⊂ (0, 1):

∆(τ) = QY ⟨j|k⟩(τ)−QY ⟨j|j⟩(τ), τ ∈ T ,

where j ∈ J and k ∈ K. In the example of Section 1, we obtain the composition e�ect with

j = 0 and k = 1. When Yk is observed, then we can construct the structure e�ect or treatment

e�ect on the treated

∆(τ) = QY ⟨k|k⟩(τ)−QY ⟨j|k⟩(τ), τ ∈ T ,

by specifying the option group and setting treatment=TRUE. In the example of Section 1, we

obtain the wage structure e�ect with j = 0 and k = 1, i.e. setting group=1 and treatment=TRUE.

If in addition we select the option decomposition=TRUE, then we obtain the entire decomposition

(1) including the composition, structure and total e�ects. The total e�ect is

∆(τ) = QY ⟨k|k⟩(τ)−QY ⟨j|j⟩(τ), τ ∈ T .

The set T is speci�ed with the option quantiles, which enumerates the quantile indexes of

interested and should be a vector containing numbers between 0 and 1.

To estimate the QE function we need to model and estimate the conditional distribution FYj |Xj

and covariate distribution FXk
. We estimate the covariate distribution using the empirical distri-

bution, and consider several regression based methods for the conditional distribution including

classical, quantile, duration, and distribution regression. Given the estimators of the conditional
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and covariate distributions F̂Yj |Xj
and F̂Xk

, the estimator of each counterfactual distribution is

obtained by the plug-in rule, namely

F̂Y ⟨j|k⟩(y) =

∫
Xk

F̂Yj |Xj
(y|x)dF̂Xk

(x), y ∈ Yj .

Then, the estimator of the QE function is also obtained by the plug-in rule as

∆̂(τ) = F̂←Y ⟨j|k⟩(τ)− F̂←Y ⟨j|j⟩(τ), τ ∈ T ,

or

∆̂(τ) = F̂←Y ⟨k|k⟩(τ)− F̂←Y ⟨j|k⟩(τ), τ ∈ T ,

if we de�ne the counterfactual population with group and set treatment=TRUE. If in addition to

treatment=TRUE, we select decomposition=TRUE, then the plug-in estimator of the total e�ect

is

∆̂(τ) = F̂←Y ⟨k|k⟩(τ)− F̂←Y ⟨j|j⟩(τ), τ ∈ T .

2.2.1. Estimation of Conditional Distribution. In this section we assume that we have samples

{(Yji, Xji) : i = 1, . . . , nj} composed of independent and identically distributed copies of (Yj , Xj)

for all populations j ∈ J . The conditional distribution FYj |Xj
can be modeled and estimated

directly, or throught the conditional quantile function, QYj |Xj
, using the relation

FYj |Xj
(y|x) ≡

∫
(0,1)

1{QYj |Xj
(u|x) ≤ y}du. (3)

The option formula speci�es the outcome Y as the left hand side variable and the covariates X

as the right hand side variable(s). The option method allows to select the method to estimate

the conditional distribution. The following methods are implemented:

(1) method = "qr", which is the default, implements the quantile regresion estimator of the

conditional distribution

F̂Yj |Xj
(y|x) = ε+

∫
(ε,1−ε)

1{x′β̂j(u) ≤ y}du, (4)

where ε is a small constant that avoids estimation of tail quantiles, and β̂(u) is the

Koenker and Bassett (1978) quantile regression estimator

β̂j(u) = arg min
b∈Rdx

nj∑
i=1

[u− 1{Yji ≤ X ′jib}][Yji −X ′jib].

The quantile regression estimator calls the R package quantreg (Koenker, 2016). The

option trimming speci�es the value of the trimming parameter ε, with default value

ε = 0.005. The option nreg sets the number of quantile regressions used to approximate

the integral in (4), with a default value of 100 such that (ε, 1− ε) is approximated by the

grid {ε, ε + (1 − 2ε)/99, ε + 2(1 − 2ε)/99, . . . , 1 − ε}. This method should be used only

with continuous dependent variables.
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(2) method = "loc" implements the estimator of the conditional distribution

F̂Yj |Xj
(y|x) = 1

nj

nj∑
i=1

1{Yji −X ′jiβ̂j ≤ y − x′β̂j}, (5)

where β̂j is the least square estimator

β̂j = arg min
b∈Rdx

nj∑
i=1

(Yji −X ′jib)
2. (6)

The estimator (5) is based on a restrictive location shift model that imposes that the

covariates X only a�ect the location of the outcome Y .

(3) method = "locsca" implements the estimator of the conditional distribution

F̂Yj |Xj
(y|x) = 1

nj

nj∑
i=1

1

{
Yji −X ′jiβ̂j

exp(X ′2jiγ̂j/2)
≤ y − x′β̂j

exp(x′2j γ̂j/2)

}
, (7)

where β̂j is the least square estimator (6), X2j ⊆ Xj with dimX2j = dx2 , and

γ̂j = arg min
g∈Rdx2

nj∑
i=1

(log(Yji −X ′jiβ̂j)
2 −X ′2jig)

2.

The option scale_variable speci�es the covariates X2j that a�ect the scale of the condi-

tional distribution. The option counterfactual_scale_variable selects the counterfac-

tual scale variables when the counterfactual population is speci�ed using counterfactual_var.

By default, R would use all the covariates as scale_variable and counterfactual_scale_variable

= counterfactual_var. The estimator (7) is based on a restrictive location scale shift

model that imposes that the covariatesX only a�ect the location and scale of the outcome

Y .

(4) method = "cqr" implements the censored quantile regression estimator of the conditional

distribution, which is the same as (4) with β̂(u) replaced by the Chernozhukov and Hong

(2002) censored quantile regression estimator. The options trimming and nreg apply

to this method with the same functionality as for the qr method. Moreover, a variable

containing a censoring indicator Cj must be speci�ed with censoring. The censored

quantile regression estimator has three-steps by default. The number of steps can be

increased by the option nsteps. In the �rst step, the censoring probabilities are estimated

by a logit regression of the censoring indicator Cj on all the covariates Xj . Then, for each

quantile index u, the observations with su�ciently low censoring probabilities relative to

u are selected. We allow for misspeci�cation of the logit by excluding the observations

that could theoretically be used but have censoring probabilities in the highest firstc

quantiles, with a default of 0.1, i.e. 10% of the observations. In the second step, standard

linear quantile regressions are estimated on the samples de�ned in step one. Using the

estimated quantile regressions, we de�ne a new sample of observations that can be used.

This sample consists of all observations for which the estimated conditional quantile is

above the censoring point. Again, we throw away observations in the lowest secondc
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quantiles of the distribution of the residuals, with a default of 0.05, i.e. 5% of the

observations. Step three consists in a new linear quantile regression using the sample

de�ned in step two. Step three is repeated if nsteps is above 3. This method should be

used only with censored dependent variables.

(5) method = "cox" implements the duration regression estimator of the conditional distri-

bution function

F̂Yj |Xj
(y|x) = 1− exp(− exp(t̂(y)− x′β̂)), (8)

where β̂ is the Cox estimator of the regression coe�cients and t̂(y) is the Cox estimator

of the baseline integrated hazard function (Cox, 1972). The Cox estimator calls the R

package survival (Therneau, 2015). The estimator (8) is based on a restrictive transfor-

mation location shift model that imposes that the covariates X only a�ect the location

of a monotone transformation of the outcome t(Y ), i.e.

t(Yj) = X ′jβj + Vj ,

where Vj has an extreme value distribution and is independent of Xj . This method

should be used only with nonnegative dependent variables.

(6) method = "logit" implements the distribution regression estimator of the conditional

distribution with logistic link function

F̂Yj |Xj
(y|x) = Λ(x′β̂(y)), (9)

where Λ is the standard logistic distribution function, and β̂(y) is the distribution regres-

sion estimator

β̂(y) = arg max
b∈Rdx

nj∑
i=1

[
1{Yji ≤ y} log Λ(X ′ijb) + 1{Yij > y} log Λ(−X ′jib)

]
. (10)

The estimator (9) is based on a �exible model where each covariate can have a het-

erogenous e�ect at di�erent parts of the distribution. This method can be used with

continuous dependent variables and censored dependent variables with �xed censoring

point.

(7) method = "probit" implements the distribution regression estimator of the conditional

distribution with normal link function, i.e. where Λ is the standard normal distribution

function in (9) and (10).

(8) method = "lpm" implements the linear probability model estimator of the conditional

distribution

F̂Yj |Xj
(y|x) = x′β̂(y),

where β̂(y) is the least squares estimator

β̂(y) = arg min
b∈Rdx

nj∑
i=1

(1{Yji ≤ y} −X ′ijb)
2.

This method might produce estimates of the conditional distribution outside the interval

[0, 1].
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For the methods (2)�(8), the option nreg sets the number of values of y to evaluate the

estimator of the conditional distribution function. These values are uniformly distributed among

the observed values of Yj . If nreg is greater than the number of observed values of Yj , then all

the observed values are used.

2.3. Inference. The command counterfactual reports pointwise and uniform con�dence in-

tervals for the QEs over a prespeci�ed set of quantile indexes. The construction of the intervals

rely on functional central limit theorems and bootstrap functional central limit theorems for the

empirical QEs derived in Chernozhukov et al. (2013). In particular, the pointwise intervals are

based on the normal distribution, whereas the uniform intervals are based on two resampling

schemes: empirical and weighted bootstrap. Thus, the (1 − α) con�dence interval for ∆(τ) on

T has the form

{∆̂(τ)± c1−αΣ̂(τ) : τ ∈ T },

where Σ̂(τ) is the standard error of ∆̂(τ) and c1−α is a critical value. There are two options

to obtain Σ̂(τ). The default option robust=FALSE computes the bootstrap standard deviation

of ∆̂(τ); whereas the option robust=TRUE computes the bootstrap interquartile range rescaled

with the normal distribution, Σ̂(τ) = (q0.75(τ) − q0.25(τ))/(z0.75 − z0.25) where qp(τ) is the pth

quantile of the bootstrap draws of ∆̂(τ) and zp is the pth quantile of the standard normal. The

pointwise critical value is c1−α = z1−α, and the uniform critical value is c1−α = t̂1−α, where t̂1−α

is a bootstrap estimator of the (1−α)th quantile of the Kolmogorov-Smirnov maximal t-statistic

t = sup
τ∈T

|∆̂(τ)−∆(τ)|/Σ̂(τ).

In addition to the intervals, counterfactual reports the p-values for several functional tests

based on two test-statistic: Kolmogorov-Smirnov and the Cramer-von-Misses-Smirnov. The

null-hypotheses considered are

(1) Correct parametric speci�cation of the model for the conditional distribution. This test

compares the empirical distribution of the outcome Yj with the estimate of the counter-

factual distribution in the reference population

F̂Y ⟨j|j⟩(y) :=

∫
Xj

F̂Yj |Xj
(y|x)dF̂Xj (x).

The power of this speci�cation test might be low because it only uses the implications

of the conditional distribution on the counterfactual distribution. For example, the test

is not informative for the linear probability and logit models where the counterfactual

distribution in the reference population is identical to the empirical distribution by con-

struction. If group is speci�ed and treatment=TRUE is selected, then the test is performed

in the population de�ned by group=1. If in addition the option decomposition=TRUE is

selected, then the test is performed in the populations de�ned by group=0 and group=1,

and in the combined population including both group=0 and group=1.
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(2) Zero QE at all the quantile indexes of interest: ∆(τ) = 0 for all τ ∈ T . This is stronger
than a zero average e�ect. Other null hypotheses of constant quantile e�ect (but at a

di�erent level than 0) can be added with the option cons_test.

(3) Constant QE at all quantile indexes of interest: ∆(τ) = ∆(0.5) for all τ ∈ T .
(4) First-order stochastic dominance: ∆(τ) ≥ 0 for all τ ∈ T .
(5) Negative �rst-order stochastic dominance: ∆(τ) ≤ 0 for all τ ∈ T .

The options of counterfactual related to inference are:

(1) noboot = TRUE suppresses the bootstrap. The bootstrap can be very demanding in terms

of computation time. Therefore, it is recommended to switch it o� for the exploratory

analysis of the data.

(2) weightedboot = TRUE selects weighted bootstrap with standard exponential weights.

The default weightedboot = FALSE selects empirical bootstrap with multinomial weights.

We recommend weighted bootstrap when the covariates include categorical variables with

small cell sizes to avoid singular designs in the bootstrap draws.

(3) reps speci�es the number of bootstrap replications. This number will matter only if the

bootstrap has not be suppressed. The default is 100.

(4) alpha speci�es the signi�cance level of the tests and con�dence intervals. Note that the

con�dence level of the con�dence interval is 1 - alpha. Thus, the default value of 0.05

produces 95% con�dence intervals.

(5) first and last select the subset of quantile indexes of interest for inference. The tails

of the distribution should not be used because standard asymptotic does not apply to

these parts. The needed amount of tail trimming depends on the sample size and on the

distribution of the dependent variable. first sets the lowest quantile index used and

last sets the highest quantile index used. The default values are 0.1 and 0.9 so that

T = [0.1, 0.9].

(6) cons_test add tests of the null hypothesis that ∆(τ) = const_test for all τ between

first and last. The null hypothesis that ∆(τ) = 0 for all τ between first and last is

tested by default. The null hypothesis that the quantile e�ects are constant is also tested

by default.

2.4. Parallel Computing. The command counterfactual provides functionality for parallel

computing, which is specially useful to speed up the execution of the bootstrap. There are two

options related to parallel computing:

(1) sepcore speci�es whether multiple cores should be used. The default value sepcore =

FALSE turns o� the parallel computing.

(2) ncore selects the number of cores to use for parallel computing. The information of this

option is only used when parallel computing is switched on with sepcore = TRUE.
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3. Empirical Examples

We consider two empirical examples to illustrate the functionality of the command counterfactual.

The �rst example is an estimation of Engel curves that includes a counterfactual analysis where

the counterfactual population is an arti�cial transformation of a reference population. The

second example is wage decomposition with respect to union status where the reference and

counterfactual populations correspond to two di�erent groups.

3.1. Engel Curves. We use the classical Engel 1857 dataset to estimate the relationship be-

tween food expenditure (foodexp) and annual household income (income), and then report the

estimates of the QE of a change in the distribution of the annual household income that might be

induced for example by a variation in income taxation.1 We estimate the conditional distribution

with the quantile regression method, i.e., method ="qr".

First, we generate the variable counterfactual_income with the counterfactual values of

income and plot the reference and counterfactual income distributions. The counterfactual dis-

tribution corresponds to a mean preserving spread of the distribution in the reference population

that reduces standard deviation by 25%.

> library(quantreg)

> data(engel)

> attach(engel)

> counter_income <- mean(income)+0.75*(income-mean(income))

> cdfx <- c(1:length(income))/length(income)

> plot(c(0,4000),range(c(0,1)), xlim =c(0, 4000), type="n", xlab = "Income",

+ ylab="Probability")

> lines(sort(income), cdfx)

> lines(sort(counter_income), cdfx, lwd = 2, col = 'grey70')

> legend(1500, .2, c("Original", "Counterfactual"), lwd=c(1,2),bty="n",

+ col=c(1,'grey70'))

To estimate the QEs of this counterfactual change we turn on the option transformation of

counterfactual by setting transformation = TRUE, and specify that the counterfactual values

of the covariate income are in the generated variable counter_income by setting counterfactual_var

= counter_income. This yields:

> qrres <- counterfactual(foodexp~income, counterfactual_var

+ = counter_income, transformation = TRUE, sepcore = TRUE, ncore = 2)

cores used= 2

Conditional Model: linear quantile regression

Number of regressions estimated: 100

1This is the same data set as in the quantile regression package quantreg, see Koenker (2016).
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Figure 1. Observed and counterfactual distributions of income

The variance has been estimated by bootstraping the results 100 times.

No. of obs. in the reference group: 235

No. of obs. in the counterfactual group: 235

Quantile Effects -- Composition

----------------------------------------------------------------------

Pointwise Pointwise Functional

Quantile Est. Std.Err 95% Conf.Interval 95% Conf.Interval

0.1 55.2 5.25 44.9 65.5 41 69.5

0.2 48.1 4.92 38.4 57.7 34.7 61.4

0.3 38.9 4.79 29.5 48.3 25.9 52

0.4 27.2 4.3 18.7 35.6 15.5 38.9

0.5 16.6 3.93 8.92 24.3 5.95 27.3

0.6 5.86 4.16 -2.3 14 -5.44 17.2

0.7 -5.84 5.31 -16.2 4.58 -20.3 8.59
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0.8 -30.6 9.15 -48.5 -12.7 -55.4 -5.76

0.9 -78.3 14.4 -107 -50.2 -117 -39.3

Bootstrap inference on the counterfactual quantile process

----------------------------------------------------------------------

P-values

======================

NULL-hypthoesis KS-statistic CMS-statistic

======================================================================

Correct specification of the parametric model 0.45 0.27

No effect: QE(tau)=0 for all taus 0.00 0.00

Constant effect: QE(tau)=QE(0.5) for all taus 0.00 0.00

Stochastic dominance: QE(tau)>0 for all taus 0.00 0.01

Stochastic dominance: QE(tau)<0 for all taus 0.00 0.00

We reject the simultaneous hypotheses of zero, constant, positive and negative e�ect of the

income redistribution at all the deciles. The QR model for the conditional distribution cannot

be rejected at conventional signi�cance levels.

Finally, we reestimate the QE function on the larger set of quantiles {0.01, 0.02, . . . , 0.99}, and
plot a uniform con�dence band over the subset {0.10, 0.11, . . . , 0.90} constructed by empirical

bootstrap with 100 replications. In Figure 2 we can visually reject the functional hypotheses

of zero, constant, positive and negative e�ect at the percentiles considered. We use the option

printdeco = FALSE to supress the display of the table of results.

> taus <- c(1:99)/100

> first <- sum(as.double(taus <= .10))

> last <- sum(as.double(taus <= .90))

> rang <- c(first:last)

> rqres <- counterfactual(foodexp~income, counterfactual_var=counter_income,

+ nreg=100, quantiles=taus, transformation = TRUE,

+ printdeco = FALSE, sepcore = TRUE,ncore=2)

cores used= 2

> duqf <- (rqres$resCE)[,1]

> l.duqf <- (rqres$resCE)[,3]

> u.duqf <- (rqres$resCE)[,4]

> plot(c(0,1), range(c(min(l.duqf[rang]), max(u.duqf[rang]))), xlim = c(0,1),

+ type = "n", xlab = expression(tau), ylab = "Difference in Food Expenditure",

+ cex.lab=0.75)

> polygon(c(taus[rang], rev(taus[rang])), c(u.duqf[rang], rev(l.duqf[rang])),

+ density = -100, border = F, col = "grey70", lty = 1, lwd = 1)
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Figure 2. Quantile e�ects of income redistribution on food consumption

> lines(taus[rang], duqf[rang])

> abline(h = 0, lty = 2)

> legend(0, -90, "QE", cex = 0.75, lwd = 4, bty = "n", col = "grey70")

> legend(0, -90, "QE", cex = 0.75, lty = 1, bty = "n", lwd = 1)

3.2. Union Premium. We use an extract of the U.S. National Longitudinal Survey of Young

Women (NLSW) for employed women in 1988 to estimate a wage decomposition with respect to

union status.2 The outcome variable Y is the log hourly wage (lwage), the covariates X include

job tenure in years (tenure), years of schooling (grade), and total experience (ttl_exp), and

the union indicator union de�nes the reference and counterfactual populations. We estimate

the conditional distributions by distribution regression with logistic link and duration regression,

i.e., method ="logit" and method ="cox". We use weighted bootstrap for the construction of

uniform con�dence intervals and hypothesis tests and run parallel computing with 2 nodes.

We start by estimating the wage decomposition by logistic distribution regression, where the

counterfactual population is speci�ed with group=union with the options treatment=TRUE and

2This dataset is available from the Stata's sample datasets at http://www.stata-press.com/data/r9/nlsw88.dta.
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decomposition=TRUE to estimate the composition, structure and total e�ects. The structure

e�ect in this case correspond to the treatment e�ect of union on the treated or union premium.

The tables show that the union workers earn higher wages than the nonumion workers throuogh-

out the distribution although the union wage gap is decreasing in the quantile index. This gap

can be mostly explained by di�erences in tenure, education and experience between union and

nonunion workers in the upper tail of the distribution and by the union premium in the rest of

the distribution.

> data(nlsw88)

> attach(nlsw88)

> lwage <- log(wage)

> logitres <- counterfactual(lwage~tenure+ttl_exp+grade,

+ group = union, treatment=TRUE,

+ decomposition=TRUE, method = "logit",

+ weightedboot = TRUE, sepcore = TRUE, ncore=2)

cores used= 2

Conditional Model: logit

Number of regressions estimated: 100

The variance has been estimated by bootstraping the results 100 times.

No. of obs. in the reference group: 1407

No. of obs. in the counterfactual group: 459

Quantile Effects -- Structure

----------------------------------------------------------------------

Pointwise Pointwise Functional

Quantile Est. Std.Err 95% Conf.Interval 95% Conf.Interval

0.1 0.239 0.0604 0.121 0.358 0.0796 0.399

0.2 0.208 0.052 0.106 0.31 0.0702 0.346

0.3 0.218 0.0435 0.132 0.303 0.103 0.333

0.4 0.19 0.0398 0.112 0.268 0.0846 0.295

0.5 0.157 0.0395 0.0793 0.234 0.0522 0.261

0.6 0.15 0.0399 0.0718 0.228 0.0444 0.255

0.7 0.0714 0.038 -0.00306 0.146 -0.0291 0.172

0.8 0.0173 0.0332 -0.0477 0.0823 -0.0705 0.105

0.9 -0.00794 0.0766 -0.158 0.142 -0.211 0.195
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Bootstrap inference on the counterfactual quantile process

----------------------------------------------------------------------

P-values

======================

NULL-hypthoesis KS-statistic CMS-statistic

======================================================================

Correct specification of the parametric model NA NA

No effect: QE(tau)=0 for all taus 0 0

Constant effect: QE(tau)=QE(0.5) for all taus 0 0.02

Stochastic dominance: QE(tau)>0 for all taus 0.96 0.96

Stochastic dominance: QE(tau)<0 for all taus 0 0

Quantile Effects -- Composition

----------------------------------------------------------------------

Pointwise Pointwise Functional

Quantile Est. Std.Err 95% Conf.Interval 95% Conf.Interval

0.1 0.0606 0.043 -0.0237 0.145 -0.0677 0.189

0.2 0.0545 0.035 -0.0141 0.123 -0.0499 0.159

0.3 0.0691 0.0356 -0.000714 0.139 -0.0371 0.175

0.4 0.0821 0.0414 0.00102 0.163 -0.0412 0.205

0.5 0.0982 0.0402 0.0195 0.177 -0.0215 0.218

0.6 0.112 0.043 0.0279 0.197 -0.016 0.24

0.7 0.115 0.0376 0.0416 0.189 0.00321 0.227

0.8 0.0975 0.0292 0.0402 0.155 0.0103 0.185

0.9 0.0613 0.0509 -0.0384 0.161 -0.0904 0.213

Bootstrap inference on the counterfactual quantile process

----------------------------------------------------------------------

P-values

======================

NULL-hypthoesis KS-statistic CMS-statistic

======================================================================

Correct specification of the parametric model NA NA

No effect: QE(tau)=0 for all taus 0 0.02

Constant effect: QE(tau)=QE(0.5) for all taus 0.72 0.64

Stochastic dominance: QE(tau)>0 for all taus 0.8 0.8

Stochastic dominance: QE(tau)<0 for all taus 0 0.02
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Quantile Effects -- Total

----------------------------------------------------------------------

Pointwise Pointwise Functional

Quantile Est. Std.Err 95% Conf.Interval 95% Conf.Interval

0.1 0.3 0.0495 0.203 0.397 0.176 0.424

0.2 0.262 0.0564 0.152 0.373 0.121 0.404

0.3 0.287 0.0515 0.186 0.388 0.158 0.416

0.4 0.272 0.0468 0.18 0.364 0.155 0.389

0.5 0.255 0.0469 0.163 0.347 0.137 0.372

0.6 0.262 0.0465 0.171 0.353 0.146 0.379

0.7 0.187 0.0465 0.0956 0.278 0.0703 0.303

0.8 0.115 0.042 0.0325 0.197 0.00965 0.22

0.9 0.0534 0.0668 -0.0775 0.184 -0.114 0.221

Bootstrap inference on the counterfactual quantile process

----------------------------------------------------------------------

P-values

======================

NULL-hypthoesis KS-statistic CMS-statistic

======================================================================

Correct specification of the parametric model NA NA

No effect: QE(tau)=0 for all taus 0 0

Constant effect: QE(tau)=QE(0.5) for all taus 0.03 0.05

Stochastic dominance: QE(tau)>0 for all taus 0.9 0.9

Stochastic dominance: QE(tau)<0 for all taus 0 0

Next, we reestimate the QE function on the larger set of quantiles {0.01, 0.02, ..., 0.99}, and
plot a uniform con�dence band over the subset {0.10, 0.11, ..., 0.90}) constructed by weighted

bootstrap with 100 replications. Figure 3 shows that the structure e�ect is heterogeneous across

the quantile indexes and explains most of the union wage gap below the third quartile. The

composition e�ect is constant across quantile indexes and explains most of the wage gap above

the third quartile.

> taus <- c(1:99)/100

> first <- sum(as.double(taus <= .10))

> last <- sum(as.double(taus <= .90))

> rang <- c(first:last)

> logitres <- counterfactual(lwage~tenure+ttl_exp+grade,

+ group = union, treatment=TRUE, quantiles=taus,

+ method="logit", nreg=100, weightedboot = TRUE,
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+ printdeco=FALSE, decomposition = TRUE,

+ sepcore = TRUE,ncore=2)

cores used= 2

> duqf_SE <- (logitres$resSE)[,1]

> l.duqf_SE <- (logitres$resSE)[,3]

> u.duqf_SE <- (logitres$resSE)[,4]

> duqf_CE <- (logitres$resCE)[,1]

> l.duqf_CE <- (logitres$resCE)[,3]

> u.duqf_CE <- (logitres$resCE)[,4]

> duqf_TE <- (logitres$resTE)[,1]

> l.duqf_TE <- (logitres$resTE)[,3]

> u.duqf_TE <- (logitres$resTE)[,4]

> range_x <- min(c(min(l.duqf_SE[rang]), min(l.duqf_CE[rang]),

+ min(l.duqf_TE[rang])))

> range_y <- max(c(max(u.duqf_SE[rang]), max(u.duqf_CE[rang]),

+ max(u.duqf_TE[rang])))

> par(mfrow=c(1,3))

> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",

+ xlab = expression(tau), ylab = "Difference in Wages", cex.lab=0.75,

+ main = "Total")

> polygon(c(taus[rang],rev(taus[rang])),

+ c(u.duqf_TE[rang], rev(l.duqf_TE[rang])), density = -100, border = F,

+ col = "grey70", lty = 1, lwd = 1)

> lines(taus[rang], duqf_TE[rang])

> abline(h = 0, lty = 2)

> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",

+ xlab = expression(tau), ylab = "", cex.lab=0.75, main = "Structure")

> polygon(c(taus[rang],rev(taus[rang])),

+ c(u.duqf_SE[rang], rev(l.duqf_SE[rang])), density = -100, border = F,

+ col = "grey70", lty = 1, lwd = 1)

> lines(taus[rang], duqf_SE[rang])

> abline(h = 0, lty = 2)

> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",

+ xlab = expression(tau), ylab = "", cex.lab=0.75, main = "Composition")

> polygon(c(taus[rang],rev(taus[rang])),

+ c(u.duqf_CE[rang], rev(l.duqf_CE[rang])), density = -100, border = F,

+ col = "grey70", lty = 1, lwd = 1)

> lines(taus[rang], duqf_CE[rang])

> abline(h = 0, lty = 2)
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Figure 3. Wage decomposition with respect to union: logit regression estimates

Finally, we repeat the point and interval estimation using the duration regression method with

the option method = "cox". Despite of relying on a more restrictive model for the conditional

distribution, the duration regression estimates in Figure 4 are similar to the logit regression

estimates in Figure 3.

> coxres <- counterfactual(lwage~tenure+ttl_exp+grade,

+ group = union, treatment=TRUE, quantiles=taus,

+ method="cox", nreg=100, weightedboot = TRUE,

+ printdeco = FALSE, decomposition = TRUE, sepcore = TRUE,ncore=2)

cores used= 2

> duqf_SE <- (coxres$resSE)[,1]

> l.duqf_SE <- (coxres$resSE)[,3]

> u.duqf_SE <- (coxres$resSE)[,4]

> duqf_CE <- (coxres$resCE)[,1]

> l.duqf_CE <- (coxres$resCE)[,3]

> u.duqf_CE <- (coxres$resCE)[,4]

> duqf_TE <- (coxres$resTE)[,1]

> l.duqf_TE <- (coxres$resTE)[,3]

> u.duqf_TE <- (coxres$resTE)[,4]

> range_x = min(c(min(l.duqf_SE[rang]), min(l.duqf_CE[rang]),

+ min(l.duqf_TE[rang])))

> range_y = max(c(max(u.duqf_SE[rang]), max(u.duqf_CE[rang]),

+ max(u.duqf_TE[rang])))
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> par(mfrow=c(1,3))

> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",

+ xlab = expression(tau), ylab = "Difference in Wages", cex.lab=0.75,

+ main = "Total")

> polygon(c(taus[rang],rev(taus[rang])),

+ c(u.duqf_TE[rang], rev(l.duqf_TE[rang])), density = -100, border = F,

+ col = "grey70", lty = 1, lwd = 1)

> lines(taus[rang], duqf_TE[rang])

> abline(h = 0, lty = 2)

> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",

+ xlab = expression(tau), ylab = " ", cex.lab=0.75, main = "Structure")

> polygon(c(taus[rang],rev(taus[rang])),

+ c(u.duqf_SE[rang], rev(l.duqf_SE[rang])), density = -100, border = F,

+ col = "grey70", lty = 1, lwd = 1)

> lines(taus[rang], duqf_SE[rang])

> abline(h = 0, lty = 2)

> plot(c(0,1), range(c(range_x, range_y)), xlim = c(0,1), type = "n",

+ xlab = expression(tau), ylab = "", cex.lab=0.75, main = "Composition")

> polygon(c(taus[rang],rev(taus[rang])),

+ c(u.duqf_CE[rang], rev(l.duqf_CE[rang])), density = -100, border = F,

+ col = "grey70", lty = 1, lwd = 1)

> lines(taus[rang], duqf_CE[rang])

> abline(h = 0, lty = 2)
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Figure 4. Wage decomposition with respect to union: duration regression estimates
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