
Rearrangement in R: A Vignette

Wesley Graybill Mingli Chen Victor Chernozhukov

Ivan Fernandez-Val Alfred Galichon

September 16, 2024

Abstract

Suppose that a target function f0:Rd → R is monotonic, namely
weakly increasing, and suppose that an initial, not necessarily monotonic,
estimate f̂ is available. The rearrangement methods of [3] can be used
to transform f̂ into a monotonic estimate f̂∗. As was shown in [1], this
rearranged estimate f̂∗ is necessarily closer to the target function f0 in
standard metrics. The R package Rearrangement implements this method
for both point and interval estimates. This vignette serves as an intro-
duction to this package and displays basic functionality of the functions
contained within.

1 Getting Started

To get started using the package Rearrangement for the �rst time, �rst issue
the command

> install.packages("Rearrangement")

into your R browser to install the package to your computer. Once the package
has been installed, you can then use the package Rearrangement during any R
session by simply issuing the command

> library(Rearrangement)

Now you are ready to use the functions and data sets contained in Rearrangement.
For general questions about the package you may type

> help(package="Rearrangement")

to view the package help �le, or for more questions about a speci�c function
you can type help(function-name).For example, try:

> help(rearrangement)

1

2 Functions

2.1 Rearrangement of Point Estimates: rearrangement

First consider the univariate case. Let χ be a compact interval and f̂ :χ → K
be a measurable function where K is a bounded subset of R. Without loss of
generality we can take χ to be [0, 1]. Let Ff̂ (y) =

∫
χ
1
{
f̂(u) ≤ y

}
du denote

the distribution function of f̂(X) where X follows the uniform distribution on

χ. We de�ne the rearrangement operator on f̂ as follows:

f̂∗(x): = inf

{
y ∈ R

∣∣∣∣[∫
χ

1
{
f̂(u) ≤ y

}
du

]
≥ x

}
.

This function f̂∗ is the increasing rearrangement of f̂ . Note that f̂∗ is simply
the quantile function of f̂ .

In fact, the monotonic rearranged function f̂∗ is provably closer to the mono-
tonic target function f in the Lp norm than the original non-monotonic estimate
f̂ .

Let us show the properties by using rearrangement to reproduce the results
of [1]. To do this we must use GrowthChart, a data set containing the height
and ages of U.S.-born white males age 2-20.

> data(GrowthChart)

> attach(GrowthChart)

Firstly we reproduce the univariate spline regression of age versus height. To
do so we must �rst load the splines package:

> library(splines)

Next we will perform the spline regression:

> ages <- unique(sort(age))

> aknots <- c(3, 5, 8, 10, 11.5, 13, 14.5, 16, 18)

> splines_age <- bs(age,kn=aknots)

> sformula <- height~splines_age

> sfunc <- approxfun(age,lm(sformula)$fitted.values)

> splreg <- sfunc(ages)

Finally, we perform the rearrangement and plot the results:

> rsplreg <- rearrangement(list(ages),splreg)

> plot(age,height,pch=21,bg='gray',cex=.5,xlab="Age (years)",ylab="Height (cms)",main="CEF (Regression Splines)",col='gray')

> lines(ages,splreg,col='red',lwd=3)

> lines(ages,rsplreg,col='blue',lwd=2)

> legend("topleft",c('Original','Rearranged'),lty=1,col=c('red','blue'),bty='n')

2

5 10 15 20

80
10

0
12

0
14

0
16

0
18

0

CEF (Regression Splines)

Age (years)

H
ei

gh
t (

cm
s)

Original
Rearranged

Notice that the original estimate had trouble accounting for the slow down
in growth around age 18. The rearranged estimate corrects for this, providing
a function that is monotonic over all ages.

This improvement in the estimation properties of f̂ can be extended to
the multivariate case. Suppose f̂ is a function in d variables. Let f̂∗ be the
result of applying the rearrangement operator to each of the d variables in
some ordering. That is, we rearrange with respect to each of the d variables in
some order corresponding to a permutation of the integers {1, . . . , d} (For more

details please refer to [1]). Then f̂∗ is provably closer to the target function f

than the original estimate f̂ . Note that this property also holds for the average
rearrangement over all possible orderings.

Now let us observe some of the functionality of this within R . The default
call to rearrangement is

> rearrangement(x, y, n = 1000, stochastic = FALSE, avg = TRUE, order = 1:length(x))

In the function rearrangement the initial estimate of the function f̂ is repre-
sented as a collection of values of the function at various points. That is, suppose
f is a function of d variables (x1, x2, . . . , xd) and we sample f̂ at all possible com-
binations of the points {x1,1, x1,2, . . . , x1,n1}, {x2,1, x2,2, . . . , x2,n2}, . . . , {xd,1, xd,2, . . . , xd,nd

}.
That is, we have a collection of values yi1,...,id = f̂(x1,i1 , . . . , xd,id) where ij runs
over all possible values. In the function call to rearrangement, x is a list, or

3

data.frame, the entries of which contain the x′
js, and y is a vector, matrix, or

array containing the values of f̂ at these points
For clari�cation, let's consider an example. Suppose f̂(x1, x2) = (x1−1)(x1−

2)(x1 − 3)(x2 − 1)(x2 − 2)(x2 − 3), or in R :

> f <- function(x1,x2){(x1 - 1)*(x1 - 2)*(x1 - 3)*(x2 - 1)*(x2 - 2)*(x2 - 3)}

Let the set of x1's be {0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5} and the set of x2's be
the same. In R we can do this with:

> x1 <- seq(0, 5, by = .5)

> x2 <- x1

> l <- NULL

> for (i in x2){l <- c(l, f(x1, i))}

> y <- matrix(l, nrow = length(x1))

> x <- list(x1,x2)

Using rearrangement on this function in R :

> ry <- rearrangement(x,y)

The plot of this function and its rearrangement are:

> par(mfrow=c(1,2))

> persp(x1,x2,y,col='lightgreen',theta=315,phi=25,r=6,shade=.5,font.lab=15,cex.lab=3)

> title("Before Rearrangement",cex.main=3,font.main=30)

> persp(x1,x2,ry,col='lightgreen',theta=315,phi=25,r=6,shade=.5,font.lab=15,cex.lab=3)

> title("After Rearrangement",cex.main=3,font.main=30)

x1x2

y

Before Rearrangement

x1x2

ry

After Rearrangement

4

There are several di�erent options for the basic function rearrangement.
Perhaps the most important parameters for a multivariate rearrangement are
avg and order . If you know the order in which you would like the rearrange-
ment to be performed, you may input this order as a list of integers into the
order option. Note that the input to order must be some permutation of the
dimensions of the data. That is, suppose you are performing a d dimensional
rearrangement. Then order should be the desired permutation of the integers
1, . . . , d. Note that the function rearrangement is currently not generalized
to n dimensions, but instead only works for up to a trivariate rearrangement.
Another option, which is advisable to use if an optimal order is not known,
is avg . avg takes a logical value which is TRUE by default. If avg = TRUE,
rearrangement averages the rearrangements corresponding to all possible per-
mutations and returns this averaged rearrangement. For example, if d = 2,
rearrangement computes the result with order = c(1, 2) and order = c(2,

1) and averages the two results. Yet another option available to users is stochas-
tic. This enables stochastic sampling of the original estimate f̂ as described in
[2]. Unless you know stochastic sampling to be preferred, it is advised that this
option be set to FALSE.

2.2 Rearrangement of Interval Estimates: simconboot and

rconint

In the same way that rearrangement of a function improves its estimation prop-
erties, rearrangement of a con�dence interval improves its inferential properties,
decreasing the length of the interval while increasing its coverage probability.

Suppose we have an initial simultaneous con�dence interval

[l, u] =
{
[l(x⃗), u(x⃗)], x⃗ ∈ χd

}
where l and u are the upper and lower end-point functions such that l(x⃗) ≤
u(x⃗) ∀ x⃗ ∈ χd.

If we apply the rearrangement operator to both end-point functions, the
resulting monotonic con�dence interval

[l∗, u∗] =
{
[l∗(x⃗), u∗(x⃗)], x⃗ ∈ χd

}
is necessarily an improvement on the original not necessarily monotonic esti-
mate. Here l∗ and u∗ denote the increasing rearrangements of l and u respec-
tively.

Within the package Rearrangement the function simconboot is used to
construct simultaneous con�dence intervals using a bootstrap method, while
rconint is used to rearrange these con�dence intervals. Let's look at an exam-
ple from [1]. Again we will use the data from GrowthChart.

> data(GrowthChart)

> attach(GrowthChart)

5

First let's construct an estimate of the con�dence interval. For the sake of
argument, suppose we wish to use a Fourier series to model the data. Here we
will use a Fourier model with 8 terms, 4 sine and 4 cosine.

> ##Normalize the ages to the interval [0, 2*pi]

> nage <- 2 * pi * (age - min(age)) / (max(age) - min(age))

> formula <- height ~ I(sin(nage)) + I(cos(nage)) + I(sin(2*nage)) + I(cos(2*nage)) + I(sin(3*nage)) + I(cos(3*nage)) + I(sin(4*nage)) + I(cos(4*nage))

> j <- simconboot(nage, height, lm, formula)

> class(j)

[1] "conint" "list"

> names(j)

[1] "x" "y" "sortedx" "Lower" "Upper" "cef"

Note that the output of simconboot, as well as that of rconint, is an object
of class conint containing the elements x, y, sortedx, Lower, Upper and

cef. Here x contains the original x data from the call to simconboot, y contains
the original y data, and sortedx contains the x data sorted with repeated
elements removed. Lower and Upper are the lower and upper end-point functions
represented as a vectors containing the values of the functions evaluated at the
points in sortedx. cef contains the original estimate.

> plot(j, border=NA, col='darkgray', xlab='Age (years)', ylab='Height (cms)', xaxt = "n")

> axis(1, at = seq(-2*pi*min(age)/(max(age)-min(age)), 2*pi+1, by=5*2*pi/(max(age)-min(age))), label = seq(0, max(age)+1, by=5))

6

80
10

0
12

0
14

0
16

0
18

0

Age (years)

H
ei

gh
t (

cm
s)

5 10 15 20

Notice in the plot above that our Fourier series estimate of the con�dence in-
terval is clearly non-monotonic. While a Fourier model may still have desirable
approximation properties for our given data set, it is clear that the results do
not conform to the inherent monotonic property we expect the data to follow.
In general, we may have a particular model or estimator for a set of data that
has desirable properties but may produce a non-monotonic estimate. In this
case applying the rearrangement operator to the estimate will necessarily im-
prove upon the original estimate while preserving the properties that made the
original estimator attractive.

Let's observe what happens when we apply this to our growth chart example.
First let's rearrange the con�dence interval and then plot the results.

> k <- rconint(j)

> ages <- unique(sort(age))

> ffunc <- approxfun(age,lm(formula)$fitted.values)

> freg <- ffunc(ages)

> rfreg <- rearrangement(list(ages),freg)

> plot(k, border=NA, col='#2A2A2A', xlab='Age (years)', ylab='Height (cms)', xaxt = "n")

> axis(1, at = seq(-2*pi*min(age)/(max(age)-min(age)), 2*pi+1, by=5*2*pi/(max(age)-min(age))), label = seq(0, max(age)+1, by=5))

> polygon.conint(j, border=NA, col='#D2D2D2')

> polygon.conint(k, border=NA, col='#2A2A2A', density=50)

> points(nage,height, cex = .5, col = '#7E7E7E')

7

> nages <- unique(sort(nage))

> lines(nages,freg, col='red',lwd=2)

> lines(nages,rfreg, col='blue',lwd=2)

> legend("topleft",c('95% CI Original','95% CI Rearranged'),lty=1,lwd=7,col=c('#D2D2D2','#2A2A2A'),bty='n')

> legend("topleft",c('95% CI Original','95% CI Rearranged'),lty=1,col=c('red','blue'),bty='n')

80
10

0
12

0
14

0
16

0
18

0

Age (years)

H
ei

gh
t (

cm
s)

5 10 15 20

95% CI Original
95% CI Rearranged
95% CI Original
95% CI Rearranged

Notice that, as predicted, the rearranged con�dence interval seems to be a
better �t to the data than the initial one.

Suppose we also wish to use this example to show the properties after rear-
rangement of a local nonparametric approximation to the conditional median
function. We compute point and interval local linear quantile regression esti-
mates by calling the fuction simboot with the estimator lprq2.

> library(quantreg)

> ages <- unique(sort(age))

> ## Univariate

> j2 <- simconboot(age, height, lprq2, formula=0,B=20,h=1,xx=ages,tau=0.5)

> k2 <- rconint(j2)

> rcqf50 <- rearrangement(data.frame(j2$sortedx),j2$cef)

Note that the input xx of simconboot includes the points to evaluate the
local linear quantile regression �t. Here xx contains the x data sorted with
repeated elements removed.

8

> plot(age,height,xlab="Age (years)",ylab = "Height(cms)",col='grey80')

> polygon.conint(j2, border=NA, col='#D2D2D2')

> polygon.conint(k2, border=NA, col='#2A2A2A', density=50)

> lines(j2$sortedx,j2$cef,lty=1,lwd=2.5,col="tomato2")

> lines(j2$sortedx,rcqf50,lty=1,lwd=1,col="blue")

> legend("topleft",c('95% CI Original','95% CI Rearranged'),lty=1,lwd=7,col=c('#D2D2D2','#2A2A2A'),bty='n')

> legend("topleft",c('95% CI Original','95% CI Rearranged'),lty=1,col=c('red','blue'),bty='n')

> title(main="CQF (Local linear, h=1) ")

5 10 15 20

80
10

0
12

0
14

0
16

0
18

0

Age (years)

H
ei

gh
t(

cm
s)

95% CI Original
95% CI Rearranged
95% CI Original
95% CI Rearranged

CQF (Local linear, h=1)

3 A Numerical Example: Monte-Carlo Experi-

ment

The following experiment quanti�es the improvement in point estimatation. We
will replicate a result from [1]. As you will see, rearrangement of an original
estimate decreases the Lp errors.

Let Z(X) be a vector of a piecewise linear transformation of X de�ned as
follows:

Z(X) = (1, X, 1{X > 5}∗ (X−5), 1{X > 10}∗ (X−10), 1{X > 15}∗ (X−15))

Consider an experiment design where the dependent variable Y equals our func-

9

tion plus a disturbance independent of our regressor

Y = Z(X)′β + ϵ

This design implies the conditional expectation function

E[Y |X] = Z(X)′β

We choose parameters for the experiment to match those of the original
growth chart data. For the error ϵ, we draw samples from a normal distribution
with mean and variance equal to that of the residuals from our regression ϵ =
Y − Z(X)′β. The following table re�ects the mean Lp estimation errors of
the Splines, Fourier, Local Polynomial, and Kernel estimates of the conditional
expectation function after 20 replications. Errors are expressed as ratios of the
errors of the rearranged estimates with those of the original estimates.

> formula0 <- height ~ age + I((age >= 5)*(age - 5)) + I((age >= 10)*(age - 10)) + I((age >= 15)*(age - 15));

> cef <- approxfun(age, lm(formula0)$fitted.values);

> ages <- unique(sort(age));

> mheight <- cef(ages);

> ###### Compute Locally Linear Mean Regression ###

> # (Modification of Koenker's lprq with box kernel)

>

> # Residuals

> residuals0 <- lm(formula0)$residuals;

> set.seed(8);

> n <- length(height); # sample size

> B <- 20; # Number of replications

> h <- .5

> formula1 <- heightb ~ as.factor(age);

> nknots <- 9;

> knots_age <- c(3.0, 5.0, 8.0, 10, 11.5, 13, 14.5, 16, 18);

> splines_age <- bs(age, degree = 3, intercept = FALSE, knots = knots_age);

> formula2 <- heightb ~ splines_age;

> nage <- 2 * pi * (age - min(age)) / (max(age) - min(age));

> formula5 <- heightb ~ nage + I(nage^2) + I(sin(nage)) + I(cos(nage)) + I(sin(2*nage)) + I(cos(2*nage));

> mheight0 <- NULL;

> mheight2 <- NULL;

> rmheight2 <- NULL;

> mheight5 <- NULL;

> rmheight5 <- NULL;

> mheight7 <- NULL;

> rmheight7 <- NULL;

> mheight8 <- NULL;

> rmheight8 <- NULL;

> for (s in 1:B) {;

+

10

+ res <- rnorm(n, mean = mean(residuals0), sd = sd(residuals0));

+ heightb <- cef(age) + res;

+

+ mheight0 <- rbind(mheight0, mheight);

+

+

+ cef2 <- approxfun(age, lm(formula2)$fitted.values);

+ mheight2 <- rbind(mheight2, cef2(ages));

+ rmheight2 <- rbind(rmheight2, rearrangement(list(ages), mheight2[s,]));

+

+ cef5 <- approxfun(age, lm(formula5)$fitted.values);

+ mheight5 <- rbind(mheight5, cef5(ages));

+ rmheight5 <- rbind(rmheight5, rearrangement(list(ages), mheight5[s,]));

+

+ cef7 <- lplm(age, heightb, h, ages)$fitted.values;

+ mheight7 <- rbind(mheight7, cef7);

+ rmheight7 <- rbind(rmheight7, rearrangement(list(ages), mheight7[s,]));

+

+ cef8 <- lclm(age, heightb, h, ages)$fitted.values;

+ mheight8 <- rbind(mheight8, cef8);

+ rmheight8 <- rbind(rmheight8, rearrangement(list(ages), mheight8[s,]));

+

+ }

> table <- matrix(0, nrow = 3, ncol = 12, dimnames = list(c("L1", "L2", "Linf"), c("Splines", "Rearranged", "Ratio (R/O)","Fourier", "Rearranged", "Ratio (R/O)","Local Poly.", "Rearranged", "Ratio (R/O)","Kernel (h=1)", "Rearranged", "Ratio (R/O)")));

> table[1,1] <- mean(apply(abs(mheight2 - mheight0), 1, mean));

> table[1,2] <- mean(apply(abs(rmheight2 - mheight0), 1, mean));

> table[1,3] <- table[1,2]/table[1,1];

> table[1,4] <- mean(apply(abs(mheight5 - mheight0), 1, mean));

> table[1,5] <- mean(apply(abs(rmheight5 - mheight0), 1, mean));

> table[1,6] <- table[1,5]/table[1,4];

> table[1,7] <- mean(apply(abs(mheight7 - mheight0), 1, mean));

> table[1,8] <- mean(apply(abs(rmheight7 - mheight0), 1, mean));

> table[1,9] <- table[1,8]/table[1,7];

> table[1,10] <- mean(apply(abs(mheight8 - mheight0), 1, mean));

> table[1,11] <- mean(apply(abs(rmheight8 - mheight0), 1, mean));

> table[1,12] <- table[1,11]/table[1,10];

> table[2,1] <- mean(apply(abs(mheight2 - mheight0)^2, 1, mean)^(1/2));

> table[2,2] <- mean(apply(abs(rmheight2 - mheight0)^2, 1, mean)^(1/2));

> table[2,3] <- table[2,2]/table[2,1];

> table[2,4] <- mean(apply(abs(mheight5 - mheight0)^2, 1, mean)^(1/2));

> table[2,5] <- mean(apply(abs(rmheight5 - mheight0)^2, 1, mean)^(1/2));

> table[2,6] <- table[2,5]/table[2,4];

> table[2,7] <- mean(apply(abs(mheight7 - mheight0)^2, 1, mean)^(1/2));

> table[2,8] <- mean(apply(abs(rmheight7 - mheight0)^2, 1, mean)^(1/2));

> table[2,9] <- table[2,8]/table[2,7];

> table[2,10] <- mean(apply(abs(mheight8 - mheight0)^2, 1, mean)^(1/2));

11

> table[2,11] <- mean(apply(abs(rmheight8 - mheight0)^2, 1, mean)^(1/2));

> table[2,12] <- table[2,11]/table[2,10];

> table[3,1] <- mean(apply(abs(mheight2 - mheight0), 1, max));

> table[3,2] <- mean(apply(abs(rmheight2 - mheight0), 1, max));

> table[3,3] <- table[3,2]/table[3,1];

> table[3,4] <- mean(apply(abs(mheight5 - mheight0), 1, max));

> table[3,5] <- mean(apply(abs(rmheight5 - mheight0), 1, max));

> table[3,6] <- table[3,5]/table[3,4];

> table[3,7] <- mean(apply(abs(mheight7 - mheight0), 1, max));

> table[3,8] <- mean(apply(abs(rmheight7 - mheight0), 1, max));

> table[3,9] <- table[3,8]/table[3,7];

> table[3,10] <- mean(apply(abs(mheight8 - mheight0), 1, max));

> table[3,11] <- mean(apply(abs(rmheight8 - mheight0), 1, max));

> table[3,12] <- table[3,11]/table[3,10];

> table

Splines Rearranged Ratio(R/O) Fourier Rearranged Ratio(R/O)
L1 0.8336007 0.7645912 0.9172151 0.7118916 0.687025 0.9650697
L2 1.0588792 0.9704775 0.9165139 0.8769878 0.847716 0.9666224
Linf 3.9006518 3.0718604 0.7875249 2.3899782 2.302835 0.9635381

Local poly. Rearranged Ratio(R/O) Kernel(h=1) Rearranged Ratio(R/O)
L1 1.042703 0.9141986 0.8767582 1.059231 0.9377153 0.8852797
L2 1.305661 1.1807139 0.9043036 1.332311 1.2216594 0.9169479
Linf 4.129122 3.7019047 0.8965356 3.989148 3.8093732 0.9549339

As we see in this experiment, all estimation methods exhibit noticable de-
creases in the Lp errors after rearrangement. For all four methods considered,
we �nd that the rearranged functions more accurately estimate the original CEF
with improvements in error from 3− 22%.

12

References

[1] V. Chernozhukov, I. Fernandez-Val, and A. Galichon. Improving point and
interval estimators of monotone functions by rearrangement. Biometrika,
96(3):559, 2009.

[2] V. Chernozhukov, I. Fernández-Val, and A. Galichon. Quantile and proba-
bility curves without crossing. Econometrica, 78(3):1093�1125, 2010.

[3] GH Hardy, JE Littlewood, and G. Polya. Inequalities, 2nd ed. Cambridge
Univ. Press, Cambridge, 1952.

13

